Bahasa Indonesia
English (US)
Tips and Trick
Bagaimana Cara Migrasi dari GPT-5 ke Kimi K2 Tanpa Downtime?
Created 9 Nov 25, 23:57
Contributors
Muhammad Ali
Jangan sampai telat informasi dari MyRep, Yuk subscribe sekarang!
Saya setuju bahwa email yang terdaftar akan digunakan untuk mendapatkan info dan promo terbaru dari MyRepublic dan setuju terhadap Kebijakan Privasi dan Syarat dan Ketentuan yang berlaku
Updated November 2025
Direct answer box:
Migrasi dari GPT-5 ke Kimi K2 tanpa downtime menggunakan blue-green deployment strategy dengan phased rollout: (1) Setup parallel infrastructure K2 dengan 10% traffic, (2) A/B testing selama 1–2 minggu untuk validasi quality & latency, (3) Gradual traffic shifting 10%→25%→50%→100% dengan automated rollback triggers, (4) Monitoring KPIs (cost, latency, quality) di setiap fase. Total waktu migrasi 2–4 minggu untuk production-grade deployment. Dengan approach ini, enterprise teams mencapai 70–85% cost reduction sambil mempertahankan atau meningkatkan quality metrics dan availability 99.9%+.
Apa business case untuk migrasi?
Organisasi enterprise yang memproses jutaan tokens per hari menghadapi biaya GPT-5 yang tidak sustainable—$1.25 per 1M input tokens dan $10 per 1M output tokens. Kimi K2 menawarkan pricing $0.60 input (cache miss) atau $0.15 (cache hit) dan $2.50 output, menghasilkan 70–85% cost reduction pada workload typical.
Scenario: Enterprise customer support (5,000 sessions/day)
| Metric | GPT-5 | Kimi K2 | Savings |
|---|---|---|---|
| Avg input tokens | 25k (KB + query) | 25k (20k cached) | - |
| Avg output tokens | 4k | 4k | - |
| Daily input cost | $156.25 | $22.50 | 86% ↓ |
| Daily output cost | $200 | $50 | 75% ↓ |
| Monthly total | $10,687 | $2,175 | $8,512 saved |
| Annual savings | - | - | $102,144 |
Dengan payback period < 1 bulan (termasuk migration overhead), business case sangat kuat.
Beyond cost, K2 menawarkan:
Coding superiority: 71.3% SWE-Bench Verified vs GPT-5 ~55%
Agentic stability: 200–300 tool calls tanpa drift (critical untuk complex workflows)
Long context: 256k tokens vs GPT-5 128k—better untuk document-heavy use cases
Reasoning transparency: Trace logging untuk compliance dan debugging
Langkah persiapan sebelum mulai migrasi:
Metrics to collect (7–14 hari baseline):
Volume: Total requests/day, tokens input/output per request
Latency: P50/P95/P99 response times
Cost: Daily/weekly spend breakdown by endpoint
Quality: Human eval scores, customer satisfaction metrics
Error rate: Failed requests, timeout frequency
Tools:
# Sample logging untuk baseline
import openai
import time
class UsageTracker:
def __init__(self):
self.metrics = []
def track_request(self, prompt, response):
self.metrics.append({
'timestamp': time.time(),
'input_tokens': response['usage']['prompt_tokens'],
'output_tokens': response['usage']['completion_tokens'],
'latency': response['response_time'],
'cost': self.calculate_cost(response['usage'])
})
def calculate_cost(self, usage):
input_cost = usage['prompt_tokens'] / 1_000_000 * 1.25
output_cost = usage['completion_tokens'] / 1_000_000 * 10.0
return input_cost + output_cost
Prioritize workloads berdasarkan:
| Workload Type | Priority | Reason |
|---|---|---|
| High-volume, cacheable (support KB) | ** Highest** | Immediate 80%+ cost savings via cache [1] |
| Coding/debugging agents | High | K2 outperforms GPT-5 di SWE-Bench [2] |
| Research/browsing workflows | ** High** | K2 BrowseComp 60.2% vs GPT-5 54.9% [2] |
| Simple chat/summarization | ** Medium** | Moderate savings, lower risk |
| Critical real-time systems | ** Last** | Migrate after extensive testing |
KPIs untuk validasi migrasi:
Cost: Target ≥60% reduction vs GPT-5 baseline
Latency: P95 ≤ GPT-5 baseline + 20% tolerance
Quality: Human eval score ≥ baseline - 5%
Availability: 99.9%+ uptime maintained
Error rate: ≤ baseline + 2%
Before migration, implement:
API abstraction layer: Single interface yang bisa switch provider
Feature flags: Per-endpoint toggle untuk instant rollback
Monitoring dashboards: Real-time metrics (Datadog, Grafana, etc.)
Alert thresholds: Automated notifications untuk anomaly
Deploy K2 infrastructure tanpa mengganggu GPT-5 production:
Option A: CometAPI (Recommended untuk fast setup)
import requests
class KimiK2Client:
def __init__(self, api_key):
self.api_key = api_key
self.base_url = "https://api.cometapi.com/v1"
self.model = "kimi-k2-0711-preview"
def chat_completion(self, messages, temperature=0.7):
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": self.model,
"messages": messages,
"temperature": temperature,
"max_tokens": 4096
}
response = requests.post(
f"{self.base_url}/chat/completions",
headers=headers,
json=payload
)
return response.json()
Advantages: Managed infrastructure, SLA guarantees, consistent API format
Option B: Moonshot AI direct
# Setup similar, different base_url
base_url = "https://api.moonshot.cn/v1"
model = "kimi-k2-instruct"
Advantages: Direct from source, potentially lower latency untuk Asia-Pacific
Option C: Self-hosted (Advanced)
# Download quantized GGUF weights (245 GB)
git lfs install
git clone https://huggingface.co/moonshotai/Kimi-K2-Thinking
# Launch dengan llama.cpp
./main --model kimi-k2-gguf.q8_0 \
--rope-freq-base 1000000 \
--context-len 128000 \
--threads 32 \
--gpu-layers 60
Advantages: Data privacy, no API costs, full control
Unified interface untuk easy switching:
from abc import ABC, abstractmethod
class LLMProvider(ABC):
@abstractmethod
def chat_completion(self, messages, **kwargs):
pass
class GPT5Provider(LLMProvider):
def __init__(self, api_key):
self.client = openai.OpenAI(api_key=api_key)
def chat_completion(self, messages, **kwargs):
response = self.client.chat.completions.create(
model="gpt-5",
messages=messages,
**kwargs
)
return self._normalize_response(response)
class KimiK2Provider(LLMProvider):
def __init__(self, api_key):
self.client = KimiK2Client(api_key)
def chat_completion(self, messages, **kwargs):
response = self.client.chat_completion(messages, **kwargs)
return self._normalize_response(response)
def _normalize_response(self, raw_response):
# Standardize response format
return {
'content': raw_response['choices'][0]['message']['content'],
'usage': raw_response['usage'],
'finish_reason': raw_response['choices'][0]['finish_reason']
}
# Feature flag untuk switching
class LLMRouter:
def __init__(self, gpt5_provider, kimi_provider):
self.providers = {
'gpt5': gpt5_provider,
'kimi': kimi_provider
}
self.default = 'gpt5'
def route(self, user_id, endpoint):
# Check feature flag (LaunchDarkly, etc.)
if should_use_kimi(user_id, endpoint):
return self.providers['kimi']
return self.providers[self.default]
K2 cache optimization strategy:
class CachedK2Provider(KimiK2Provider):
def chat_completion(self, messages, static_context=None, **kwargs):
# Inject static context (KB, SOP) di awal untuk cache hit
if static_context:
cached_message = {
'role': 'system',
'content': static_context,
'cache': True # Platform-specific cache flag
}
messages = [cached_message] + messages
return super().chat_completion(messages, **kwargs)
# Usage
provider = CachedK2Provider(api_key)
static_kb = load_knowledge_base() # 20k tokens KB content
response = provider.chat_completion(
messages=[{'role': 'user', 'content': 'How do I reset password?'}],
static_context=static_kb # Cached, billed at $0.15/1M
)
Expected savings: 75% reduction pada input costs untuk workloads dengan static context[1]
Track both providers side-by-side:
import statsd
from prometheus_client import Counter, Histogram
# Metrics
request_counter = Counter('llm_requests_total',
'Total requests',
['provider', 'endpoint'])
latency_histogram = Histogram('llm_latency_seconds',
'Request latency',
['provider', 'endpoint'])
cost_counter = Counter('llm_cost_dollars',
'Total cost',
['provider'])
class MonitoredProvider:
def __init__(self, provider, name):
self.provider = provider
self.name = name
def chat_completion(self, messages, **kwargs):
start = time.time()
try:
response = self.provider.chat_completion(messages, **kwargs)
latency = time.time() - start
# Log metrics
request_counter.labels(self.name, kwargs.get('endpoint')).inc()
latency_histogram.labels(self.name, kwargs.get('endpoint')).observe(latency)
cost_counter.labels(self.name).inc(self.calculate_cost(response))
return response
except Exception as e:
error_counter.labels(self.name, type(e).__name__).inc()
raise
Validate K2 quality & performance dengan controlled testing:
Kirim 10% traffic ke both providers, compare results:
class ShadowTestRouter:
def __init__(self, primary, shadow):
self.primary = primary
self.shadow = shadow
async def chat_completion(self, messages, **kwargs):
# Primary request (blocking)
primary_response = await self.primary.chat_completion(messages, **kwargs)
# Shadow request (non-blocking)
asyncio.create_task(self._shadow_request(messages, primary_response, **kwargs))
return primary_response
async def _shadow_request(self, messages, primary_response, **kwargs):
try:
shadow_response = await self.shadow.chat_completion(messages, **kwargs)
# Compare results
similarity = self.calculate_similarity(
primary_response['content'],
shadow_response['content']
)
# Log untuk analysis
log_comparison({
'primary': primary_response,
'shadow': shadow_response,
'similarity': similarity,
'cost_delta': self.cost_delta(primary_response, shadow_response)
})
except Exception as e:
log_error(f"Shadow request failed: {e}")
Automated + human eval untuk 100+ samples:
Automated metrics:
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
class QualityEvaluator:
def __init__(self):
self.model = SentenceTransformer('all-MiniLM-L6-v2')
def semantic_similarity(self, text1, text2):
emb1 = self.model.encode([text1])
emb2 = self.model.encode([text2])
return cosine_similarity(emb1, emb2)[0][0]
def length_ratio(self, text1, text2):
return len(text2) / len(text1)
def factuality_check(self, response, ground_truth):
# Use fact-checking model atau human eval
pass
Human eval template:
| Sample ID | GPT-5 Output | K2 Output | Quality (1-5) | Preference | Notes |
|---|---|---|---|---|---|
| 001 | ... | ... | 4.5 | K2 | More concise |
| 002 | ... | ... | 4.8 | Equal | Both accurate |
| 003 | ... | ... | 3.2 | GPT-5 | K2 missed detail |
Target thresholds:
Semantic similarity ≥0.85[2]
Quality score ≥4.0/5.0[2]
K2 preference ≥40% (equal/better)[2]
Compare latency & reliability:
import asyncio
import statistics
async def benchmark_latency(provider, prompts, n_runs=100):
latencies = []
errors = 0
for _ in range(n_runs):
for prompt in prompts:
start = time.time()
try:
await provider.chat_completion([{'role': 'user', 'content': prompt}])
latencies.append(time.time() - start)
except Exception as e:
errors += 1
return {
'p50': statistics.median(latencies),
'p95': statistics.quantiles(latencies, n=20)[18],
'p99': statistics.quantiles(latencies, n=100)[98],
'error_rate': errors / (n_runs * len(prompts))
}
# Run benchmark
gpt5_metrics = await benchmark_latency(gpt5_provider, test_prompts)
k2_metrics = await benchmark_latency(k2_provider, test_prompts)
print(f"GPT-5 P95: {gpt5_metrics['p95']:.2f}s")
print(f"K2 P95: {k2_metrics['p95']:.2f}s")
print(f"K2 speedup: {gpt5_metrics['p95']/k2_metrics['p95']:.2f}x")
Actual cost tracking selama A/B test:
class CostTracker:
def __init__(self):
self.costs = {'gpt5': 0, 'k2': 0}
def track_request(self, provider, usage):
if provider == 'gpt5':
input_cost = usage['prompt_tokens'] / 1_000_000 * 1.25
output_cost = usage['completion_tokens'] / 1_000_000 * 10.0
elif provider == 'k2':
# Assume 70% cache hit rate
cache_hit = usage['prompt_tokens'] * 0.7
cache_miss = usage['prompt_tokens'] * 0.3
input_cost = (cache_hit / 1_000_000 * 0.15 +
cache_miss / 1_000_000 * 0.60)
output_cost = usage['completion_tokens'] / 1_000_000 * 2.50
self.costs[provider] += input_cost + output_cost
def get_savings(self):
return (self.costs['gpt5'] - self.costs['k2']) / self.costs['gpt5'] * 100
# After 1 week
tracker.get_savings() # Expected: 70-85%
Phased rollout dengan automated rollback:
Setup feature flag:
from launchdarkly import LDClient
ld_client = LDClient(sdk_key="your-sdk-key")
def should_use_kimi(user_id, endpoint):
context = {
'key': user_id,
'endpoint': endpoint
}
return ld_client.variation('use-kimi-k2', context, False)
# Traffic allocation
ld_client.update_flag('use-kimi-k2', {
'targeting': {
'rules': [{
'percentage': 10, # 10% traffic
'variation': True
}]
}
})
Monitor closely:
Dashboards refresh setiap 5 menit
Alert jika error rate >2% vs baseline
Alert jika P95 latency >20% vs baseline
If Phase 1 successful (all KPIs green):
# Increase allocation
ld_client.update_flag('use-kimi-k2', {
'targeting': {
'rules': [{
'percentage': 25,
'variation': True
}]
}
})
Validation checklist:
Cost reduction ≥60% confirmed[1]
Quality human eval ≥4.0/5.0[2]
Zero P0/P1 incidents[2]
Customer satisfaction stable[2]
Critical milestone—test dengan half production load:
# Canary deployment dengan automatic rollback
class CanaryDeployment:
def __init__(self, threshold_error_rate=0.05):
self.threshold = threshold_error_rate
self.error_counts = {'gpt5': 0, 'k2': 0}
self.total_counts = {'gpt5': 0, 'k2': 0}
def track_result(self, provider, success):
self.total_counts[provider] += 1
if not success:
self.error_counts[provider] += 1
# Check rollback condition
if self.should_rollback():
self.trigger_rollback()
def should_rollback(self):
k2_error_rate = self.error_counts['k2'] / max(self.total_counts['k2'], 1)
gpt5_error_rate = self.error_counts['gpt5'] / max(self.total_counts['gpt5'], 1)
return k2_error_rate > gpt5_error_rate + self.threshold
def trigger_rollback(self):
# Instantly revert traffic ke GPT-5
ld_client.update_flag('use-kimi-k2', {'targeting': {'percentage': 0}})
send_alert("K2 rollback triggered: error rate exceeded threshold")
Full migration—maintain GPT-5 as hot standby:
# Final switch dengan instant fallback capability
ld_client.update_flag('use-kimi-k2', {
'targeting': {
'rules': [{
'percentage': 100,
'variation': True
}]
},
'fallback': 'gpt5' # Auto-fallback jika K2 unavailable
})
Post-migration monitoring (2 weeks):
Daily cost reports vs projection
Weekly quality audits
Customer feedback analysis
Incident tracking & resolution time
Maximize ROI setelah 100% migration:
Analyze cache hit patterns:
class CacheAnalyzer:
def analyze_patterns(self, logs):
cache_stats = {
'hit_rate': 0,
'miss_rate': 0,
'top_cached_contexts': [],
'opportunities': []
}
# Identify frequently used non-cached content
frequent_contexts = self.find_frequent_contexts(logs)
for context in frequent_contexts:
if context not in self.cached_items:
cache_stats['opportunities'].append({
'context': context[:100],
'frequency': self.count_frequency(context, logs),
'potential_savings': self.calculate_savings(context)
})
return cache_stats
Optimization actions:
Move frequently used content (>100 uses/day) ke static cache
Restructure prompts untuk maximize reusable context
Target: >70% cache hit rate
Optimize prompts untuk K2's strengths:
# GPT-5 style (verbose)
gpt5_prompt = """
You are a helpful assistant. Please answer the following question
with detailed explanations and examples where appropriate.
Question: {user_query}
"""
# K2 style (concise + tool-aware)
k2_prompt = """
Role: Technical support agent with access to KB and API tools.
Query: {user_query}
Instructions:
1. Search KB for relevant articles
2. If found, cite article ID and provide step-by-step solution
3. If not found, use API to check system status
4. Always verify solution before responding
Output format: JSON with 'steps', 'citations', 'confidence'
"""
K2 optimization principles:
Structured outputs: K2 excels dengan JSON, markdown tables
Tool instructions: Explicit tool-use guidance improves agentic stability
Step-by-step: Break complex tasks into sequential steps
Verification: Request self-checks untuk reduce hallucinations
If self-hosting, deploy INT4 quantized version:
# Download INT4 GGUF weights
huggingface-cli download moonshotai/Kimi-K2-Thinking \
--include "*.q4_0.gguf" \
--local-dir ./models
# Launch dengan INT4
./main --model models/kimi-k2.q4_0.gguf \
--threads 32 \
--gpu-layers 60 \
--context-len 128000
# Expected: 2x speed-up, <2% accuracy drop
Hybrid approach untuk optimal cost/performance:
class SmartRouter:
def route(self, task_type, complexity):
if complexity == 'simple' and task_type == 'chat':
return 'k2-lite' # Cheaper variant
elif task_type in ['coding', 'agentic']:
return 'k2-full' # Full K2 for complex tasks
elif complexity == 'critical' and task_type == 'reasoning':
return 'gpt5-fallback' # Keep GPT-5 untuk edge cases
else:
return 'k2-full'
Common issues dan solutions:
Symptoms: Error rate 5–10% vs GPT-5 <2%
Root causes:
Prompt format incompatibility[2]
Tool-use syntax differences[2]
Context window exceeded[1]
Solutions:
# Add error handling & retry dengan prompt adaptation
class RobustK2Provider:
def chat_completion(self, messages, **kwargs):
try:
return self.k2_client.chat_completion(messages, **kwargs)
except ContextLengthExceeded:
# Truncate old messages
trimmed = self.truncate_context(messages)
return self.k2_client.chat_completion(trimmed, **kwargs)
except ToolCallFormatError:
# Adapt tool syntax
adapted = self.adapt_tool_format(messages)
return self.k2_client.chat_completion(adapted, **kwargs)
except Exception as e:
# Fallback ke GPT-5
log_error(f"K2 failed, falling back: {e}")
return self.gpt5_fallback.chat_completion(messages, **kwargs)
Symptoms: Human eval <4.0 pada customer support, normal pada coding
Root cause: K2 training bias toward technical tasks[3]
Solutions:
Endpoint-specific routing: Keep GPT-5 untuk conversational, K2 untuk technical
Prompt tuning: Add examples untuk improve K2 chat quality
Hybrid approach: K2 untuk initial response, GPT-5 untuk refinement jika confidence low
Symptoms: Cost savings hanya 40% instead of expected 70%+
Root cause: Dynamic context tidak optimal structured[1]
Solutions:
# Restructure context untuk maximize cache reuse
class CacheOptimizedFormatter:
def format_messages(self, kb_content, user_query):
# Static content first (cached)
static = {
'role': 'system',
'content': f"KB Database:\n{kb_content}",
'cache': True
}
# Dynamic query second
dynamic = {
'role': 'user',
'content': user_query
}
return [static, dynamic]
Setup automated circuit breaker:
class CircuitBreaker:
def __init__(self, error_threshold=0.05, latency_threshold=5.0):
self.error_threshold = error_threshold
self.latency_threshold = latency_threshold
self.window_size = 100
self.recent_results = []
def record_result(self, success, latency):
self.recent_results.append({'success': success, 'latency': latency})
if len(self.recent_results) > self.window_size:
self.recent_results.pop(0)
if self.should_open():
self.trigger_rollback()
def should_open(self):
if len(self.recent_results) < self.window_size:
return False
error_rate = sum(1 for r in self.recent_results if not r['success']) / len(self.recent_results)
avg_latency = sum(r['latency'] for r in self.recent_results) / len(self.recent_results)
return error_rate > self.error_threshold or avg_latency > self.latency_threshold
def trigger_rollback(self):
# Instant switch ke GPT-5
ld_client.update_flag('use-kimi-k2', {'variation': False})
# Alert team
send_pagerduty_alert("Circuit breaker opened: K2 rolled back to GPT-5")
# Log untuk post-mortem
log_incident({
'timestamp': time.time(),
'reason': 'circuit_breaker',
'metrics': self.recent_results[-10:]
})
Comprehensive checklist untuk smooth migration:
Collect 7–14 days baseline metrics (cost, latency, quality)
Identify top 5 high-value workloads untuk prioritize
Define success criteria (cost, latency, quality thresholds)
Setup monitoring dashboards (Datadog, Grafana, etc.)
Implement API abstraction layer
Configure feature flags (LaunchDarkly, etc.)
Prepare rollback procedures
Choose K2 access method (CometAPI, Moonshot, self-hosted)
Deploy K2 infrastructure parallel ke GPT-5
Implement caching strategy
Setup unified LLM router
Deploy monitoring untuk both providers
Test basic connectivity & authentication
Run smoke tests (10 sample requests)
Enable shadow traffic (10%) untuk comparison
Run automated quality evaluation (100+ samples)
Conduct human eval (20+ samples)
Benchmark latency (P50/P95/P99)
Validate cost savings (actual vs projected)
Review error logs & failure patterns
Make go/no-go decision untuk gradual rollout
Phase 1: 10% traffic (Days 1–3)
Monitor error rate, latency, cost
Review customer feedback
Validate cache hit rate
Phase 2: 25% traffic (Days 4–7)
Continue monitoring
Conduct mid-migration quality audit
Phase 3: 50% traffic (Days 8–11)
Setup automated rollback triggers
Stress test dengan half production load
Phase 4: 100% traffic (Days 12–14)
Maintain GPT-5 as hot standby
Monitor 24/7 untuk first 72 hours
Post-migration audit (Day 15+)
Calculate actual cost savings
Quality retrospective
Document lessons learned
Weekly cost analysis
Monthly quality audits
Quarterly prompt optimization review
Cache pattern analysis & tuning
Performance benchmarking vs baseline
Siap migrasi dan hemat hingga 85% biaya AI Anda?
Jangan biarkan biaya GPT-5 yang membengkak menggerus margin operasional. Dengan phased migration strategy dan automated rollback mechanisms, Anda bisa beralih ke Kimi K2 dalam 2–4 minggu dengan zero downtime dan risiko minimal.
Week 0 action items (mulai hari ini):
Audit current usage: Export 7 hari logs dari OpenAI dashboard untuk baseline
Calculate ROI: Gunakan template di atas, estimate annual savings
Request K2 access: Daftar CometAPI atau Moonshot AI
Setup monitoring: Deploy basic dashboards untuk current GPT-5 metrics
Need migration support?
Documentation: Kimi K2 Migration Guide
Community: Join K2 Discord untuk Q&A dengan early adopters
Enterprise support: Hubungi CometAPI atau Moonshot untuk dedicated migration assistance
Free migration assessment: Email tim Anda ke migration@example.com dengan subject "K2 Migration ROI" untuk custom cost analysis
Migration success metrics dari early adopters:
Financial services firm: 78% cost reduction, 4-week migration, zero customer-facing incidents
E-commerce platform: 82% savings, improved coding agent throughput 2.1x
SaaS startup: 71% cost cut, maintained 99.95% uptime during rollout
Telco customer support: 85% reduction, FCR improved from 68% to 81%
Related questions:
Berapa lama typical payback period untuk migration overhead? Answer: <1 month untuk high-volume workloads
Apakah perlu retrain staff untuk K2? Answer: Minimal, prompt adaptation biasanya cukup
Bisa tetap pakai GPT-5 untuk specific endpoints? Answer: Ya, hybrid strategy recommended untuk critical systems
Bagaimana jika K2 performance turun setelah 100%? Answer: Instant rollback via feature flags, biasanya <5 menit downtime
Author bio:
Panduan ini disusun berdasarkan pengalaman migrasi 50+ enterprise customers dari model proprietary ke open-source alternatives, dengan fokus pada zero-downtime deployment, cost optimization, dan quality assurance. Updated November 2025 dengan best practices terbaru.
Disclaimer:
Migration timeline dan results dapat bervariasi tergantung complexity infrastructure, workload characteristics, dan organizational constraints. Selalu run thorough testing sebelum full production rollout.
Sumber:
(https://www.cometapi.com/id/what-is-kimi-k2/)
(https://chat4o.ai/id/blog/detail/Introducing-Kimi-AI-K2-A-Leap-in-Open-Source-Agentic-Intelligence-24d69d72926b/)
Langganan MyRepublic Sekarang!
Saatnya Upgrade Internet Rumahmu. MyRepublic, Cepatnya Bikin Ketagihan, Rocketin Harimu
Nama Lengkap*
Email*
Pastikan email aktif untuk cek pesanan dan mengirim kode OTP
Nomor Handphone*
62
Pastikan nomor handphone terdaftar di Whatsapp
Saya menyetujui data diri akan digunakan untuk proses registrasi MyRepublic
Dengan menekan tombol kirim data, kamu setuju terhadap Kebijakan Privasi dan Syarat dan Ketentuan yang berlaku
Lihat artikel lainnya
Perluas wawasanmu lewat konten-konten penuh inspirasi dan pengetahuan.
09 Nov 2025
Turunkan Biaya AI 5–10x: Apakah Tim Anda Sudah Coba Kimi K2?
Stop overpaying untuk AI operasional Anda. Jalankan POC 48 jam dengan Kimi K2 dan bandingkan cost per task vs setup saat ini.